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Abstract 

A model of the plasma pinch is formulated which 
represents the imploding current sheet as an impermeable 
piston that drives a gasdynamic shock wave ahead of it 
toward the axis of the discharge. This cylindrical 
piston-shock problem is solved without further reference 
to electromagnetic effects. First the Lagrangian equations 
are solved for a parabolic shock trajectory in the r-t 
plane yielding a first and second approximation for the 
piston trajectory. 
approximation, the same problem is solved for a straight 
shock in the r-t plane by the method of characteristics 
in using the Eulerian formulation. It is found that the 
solutions given by the two methods compare exactly where 
a solution to the problem using the method of Characteristics 
exists. The results are in qualitative agreement with relevant 
experimental observations. 

To determine the accuracy of the 
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I . INTRODUCTION 

The ob jec t  of t he  research presented here  i s  t o  formulate 
a t h e o r e t i c a l  model of t h e  plasma pinch on t h e  basis of  gas  
dynamics i n  order  t o  determine what e f f e c t s  observed 
experimentally might be due only t o  t h e  gas dynamics of t h e  

problem. 
The plasma pinch under cons idera t ion  has been descr ibed 

by Jahn and von Jaskowsky. 
apparatus  c o n s i s t s  of two plane c i r c u l a r  e l ec t rodes  o f k u r ,  
f i v e ,  o r  e i g h t  inches diameter, separated by a two inch gap 
of t e s t  gas. Typical ly  t h e  test  gas i s  Argon, although s e v e r a l  
o t h e r  gases have been used. The e l ec t rodes  a r e  connected t o  
t w o  d i f f e r e n t  types of e x t e r n a l  circuits--simple lumped capacitor 

a r r ays ,  o r  pulse-forming networks3' '--which are discharged 
through t h e  gap v i a  a gas- t r iggered swi tchO5 
t h a t  t h e  discharge across  t h e  e l ec t rodes  begins as a c y l i n d r i c a l  
shee t  a t  t h e  perimeter of  the e l ec t rodes  and propagates r a d i a l l y  
inward, dr iven  by t h e  electromagnet ic  i n t e r a c t i o n  of  t h e  
discharge c u r r e n t  with i t s  own magnetic f i e l d .  The r a d i a l .  
t r a n s i t  t i m e  f o r  t he  c u r r e n t  shee t  i s  on t h e  order  of a few 
microseconds. 

2 r  3 r  ' Brief ly ,  t he  phys ica l  

It is observed 

Such pinches have been s tudied  q u i t e  ex tens ive ly  

by a v a r i e t y  of photographic and i n t e r n a l  probe techniques, 6 ,  7 

I n  t h e  s tudy  which follows, t h i s  pinch process i s  i d e a l i z e d  
t o  t h e  problem of a r a d i a l l y  dr iven  c y l i n d r i c a l  p i s ton ,  represent ing  

t h e  cu r ren t  shee t ,  generat ing a gas dynamic s t rong  shock which 
propagates  ahead of t h e  p i s ton  i n t o  t h e  undisturbed gas i n  t h e  

c e n t e r  of t h e  cyl inder .  

1 



11. THEORY 

A. DEVELOPMENT OF MASTER EQUATION 

Consider a c y l i n d r i c a l  p i s t o n  of given he ight  bu t  v a r i a b l e  
radius .  Suppose t h a t  suddenly t h e  r ad ius  of t h i s  p i s t o n  
decreases so r ap id ly  t h a t  a s t rong  shock of  very high Mach 
number i s  dr iven  i n  f r o n t  of t h e  w a l l  toward t h e  a x i s  of t h e  
cyl inder .  The ques t ion  may be posed i n  two d i f f e r e n t  manners. 
If w e  know t h e  pa th  of the  p i s ton  i n  t h e  r-t plane,  w h a t  w i l l  
t h e  shock pa th  look l i k e ?  Conversely, i f  we  know t h e  shock 
path,  what p i s t o n  motion was necessary t o  d r i v e  i t ?  From t h e  
formulation of the  problem, it is  found t o  be much easier t o  
so lve  t h e  l a t t e r  case. 

T h e  f i rs t  attempt t o  solve t h i s  problem w a s  made from t h e  
Lagrangian viewpoint of  following each p a r t i c l e .  The claim i s  
made t h a t  i f  we  are consider ing t w o  p a r t i c l e s  t h a t  are i n i t i a l l y  
(before any shock has touched t h e m )  loca ted  a t  d i f f e r e n t  r a d i i  i n  
the cy l inder ,  the i r  respec t ive  r ad i i  w i l l  always be such t h a t  t he  

p a r t i c l e  i n i t i a l l y  c l o s e r  t o  t h e  a x i s  w i l l  always be closer t o  
t h e  ax i s .  That is, i n  the r-t plane, t h e  p a r t i c l e  pa ths  w i l l  
never i n t e r s e c t .  This immediately leads  t o  a l a w  f o r  conservat ion 
of  m a s s  and a method f o r  l abe l ing  each p a r t i c l e .  Consider Fig. 1 
which shows t he  pa th  of  t he  p i s t o n  P ( t ) ,  t h e  path of the shock 
Rs (t) , and t h e  pa th  of any p a r t i c l e  H( Y, t t ) .  (y w i l l  be def ined 

such t h a t  every p a r t i c l e  beginning a t  t h e  same rad ius  w i l l  have 
t h e  same , bu t  p a r t i c l e s  beginning a t  d i f f e r e n t  r a d i i  w i l l  
have d i f f e r e n t  . Once a p a r t i c l e  is  labeled by a 8 it 
w i l l  r e t a i n  t h i s  value throughout i t s  h i s to ry .  Phys ica l ly ,  t h e  
stream funct ion  corresponds t o  t h e  m a s s  between t h e  p i s t o n  
and t h e  p a r t i c l e  under question. On t h e  f igure ,  t '  r e f e x s  t o  
t h e  t i m e  when t h e  shock passes over t h e  par t ic le  . Thus, 
i f  t h e  shock t r a j e c t o r y  is  known, then t h e  stream funct ion  may 

be said t o  be a funct ion of t ' .  Conversely, t '  may be regarded 

2 



as a func t ion  of 'f' . *'" '''l1 S p e c i f i c a l l y ,  we d e f i n e  

L i s  the  i n i t i a l  r ad ius  of  t h e  chamber. 
p o s i t i o n  of t h e  p a r t i c l e  poo is  
t h e  dens i ty  of t h e  undisturbed gas. A t  any la ter  t i m e ,  cy may 
be found by tak ing  the i n t e g r a l  

H (  q , t )  

R s ( t ' )  i s  t h e  r a d i a l  
before  t h e  shock h i t s  it, 

c y =  I r d r  

J 
p ( t)  

p ( r , t )  i s  the d e n s i t y  a t  any po in t  on t h e  r-t plane. 
there a r e  only  two independent va r i ab le s ,  we may consider  

r = r (  y ,  t) o r  we may say  t h a t  Cy = 0, (r, t) , 
of view makes (f-' and t the independent va r i ab le s .  

Since 

The Lagrangian p o i n t  

t 

3 



The momentum equat ion is seen t o  be 

aP 

a t2 3 r  
- - -  a 2r Y-- (3)  

where p i s  t h e  pressure  ac t ing  on t h e  p a r t i c l e  t o  a c c e l e r a t e  it. 
The process i s  assumed t o  be e n t i r e l y  i s e n t r o p i c  except f o r  

a jump i n  entropy as t h e  shock crosses  t h e  p a r t i c l e ' s  path.  

Therefore, t he  r a t i o  p/'f is a constant  f o r  each p a r t i c l e  as 
it t r a v e l s  from t h e  shock toward the  ax i s .  This constant  i s  
given by t h e  condi t ions  immediately a f t e r  t h e  shock. 

and dens i ty  of a p a r t i c l e  immediately a f t e r  t h e  shock has  crossed 
it w i l l  be denoted by t h e  subsc r ip t  1. 
hea ts ,  assumed constant .  

The pressure  

# i s  t h e  r a t i o  of s p e c i f i c  

P Pl 

Note t h a t  p/pJ 
func t ion  is  known i f  t h e  shock t r a j e c t o r y  i s  known. 

and 
conjunction with t h e  p e r f e c t  gas law. S p e c i f i c a l l y  

i s  a funct ion only of  t h e  s t r e a m l i n e .  This  

fl can be found by using t h e  s t rong  shock r e l a t i o n s  i n  
That is, p1 

2- 1 where r +  

U - 2 3  M 2 = p, d ( 1 - E )  2-  - Pood (1-0 
p 1 -  Poe 1+1 . P, 

and 

4 



o r  

Thus the  i s e n t r o p i c  condi t ion i s  

I n  these  r e l a t i o n s  
i s  t h e  pressure of t h e  undisturbed gas  Po0 

M is t h e  Mach number of t h e  shock 
U i s  t h e  ve loc i ty  o f  t h e  shock 

k ( t ' )  

i s  t h e  speed of sound i n  t h e  undisturbed gas 
i s  t h e  ve loc i ty  of  t h e  shock as it crosses  the  
p a r t i c l e  v= ( t ' ) .  That is, ks2 is  t h e  
square of t h e  de r iva t ive  of t h e  shock t r a j e c t o r y  
with respec t  t o  t i m e  evaluated a t  t h e  time t ' .  

00 
C 

S 

These conservation r e l a t i o n s  w i l l  now be combined i n t o  one 
r e l a t i o n s h i p .  F i r s t ,  by d i f f e r e n t i a t i o n ,  equat ion (2 )  becomes 

* 

(7) 2 a'? = - 2 T f r  d r  = -R-p d ( r  ) 

The minus s ign  i s  a r e s u l t  of t h e  stream funct ion  increas ing  as 

r i s  decreasing. A f t e r  d ividing through by f , t h i s  r e l a t i o n  

m a y  now be in t eg ra t ed  from the  shock t o  an  a r b i t r a r y  stream l i n e  

5 



y.' t o  y i e l d  

- H 2 ( ( Y , t )  

where w s  i s  t h e  value of y a t  t h e  shock a t  any t i m e  t. That 
is, y s  = V s ( t ) .  Note t h a t  t h i s  i n t e g r a t i o n  i s  done a t  t h e  
t i m e  t and n o t  a t  t h e  t i m e  t ' .  S u b s t i t u t i n g  i n  t h e  i s e n t r o p i c  
r e l a t i o n ,  we  f i nd  

I 

(8) 
2 2 

H (q,t)  = R s ( t )  + - 

cy 

If Rs = R s ( t )  i s  given, then we may f ind  a funct ion t - t ( R s ) .  

For  example, i f  Rs = L - At - B t  , then  2 

-A + 
t ( R s )  = t = 2B 

F r n m  the d e f i n i t i o n  of we  note  t h a t  

w h e r e  ys i s  t h e  value of  y a t  t h e  shock a t  any t i m e  t. Hence 

Therefore 

I I 

6 



giv ing  

I -  

\ 
which is  a funct ion only of . Recall t h a t  t '  is  def ined 
as the  time when t h e  p a r t i c l e  \y 
I n  the  example given above, equation (9)  becomes 

was crossed by t h e  shock. 

t '  = t  

y ie ld ing  

R s ( t ' )  = -A - 2 B t '  = - // =P@ (10) 

This r e l a t i o n  w i l l  be used l a t e r .  L e t  u s  now determine an 
expression f o r  p. From the  momentum equation, we f ind  t h a t  

having made u s e  of equation ( 7 ) .  Upon i n t e g r a t i o n  from t h e  shock 
t o  any p a r t i c l e  , t h i s  becomes 

Note t h a t  t h i s  i n t e g r a t i o n  is  done a t  t h e  t i m e  t ,  any a r b i t r a r y  
t i m e  a f t e r  t h e  shock has crossed the  p a r t i c l e  W . S u b s t i t u t i n g  

7 



equation (5) into this expression, the pressure is seen to be 

Putting this information back into equation (81, we find the 
master equation 

Let us nondimensionalize the quantities appearing in the equation 
as follows 

t : T =  S v 
: a ' =  

R r 
L '  s L 

x = - .  x =  
7r L2 TO 

Note that 0 5 x, Xs, and 5 1. T is chosen so that is in 
microseconds, corresponding to the observation that all discharges 
have a pinch time of a few microseconds. The factor nondimension- 
alizing the stream function is the total mass contained in the 
chamber. 

0 

It should be mentioned that H (  W,t) is exactly the same 
quantity as r( V,t) . With these additions, the master equation 

8 



becomes 

!J J 2 
!Js=l-Xs 

This equation implies t h a t  a p a r t i c l e  is ,  a t  a t i m e  L , a t  
a pos i t i on ,  away from t h e  shock by a d i s t ance  equal  t o  € mul t ip l i ed  
by an i n t e g r a l ,  t h e  integrand of which consists of a numerator 
represent ing  t h e  i s e n t r o p i c  condi t ion and a denominator which i s  
a cons tan t  f r a c t i o n  of the pressure.  & v a r i e s  from 0 f o r  a= 1 

t o  .25 f o r  d = 1.667. Recall t h a t  t h e  e n t i r e  integrand is  . 
The p i s t o n  t r a j e c t o r y  i s  x ( 0 , t ) ;  t h a t  is, t h e  p i s t o n  is  always 
a t  t he  p a r t i c l e  a' = 0. 

d e r i v a t i v e  of  t h e  desired so lu t ion ,  a method of i t e r a t i o n  must be 
used. Due t o  the  d i f f i c u l t y  i n  tak ing  d e r i v a t i v e s  numerically, 
we should search f o r  an a n a l y t i c  s o l u t i o n  t h a t  may be placed back 
i n t o  t h e  equation. From t h i s  a n a l y t i c  so lu t ion ,  a second 
approximation may be found, numerically i f  ixcessary, an6 cercpred 

t o  t h e  f i r s t  so lu t ion .  I f  the comparison i s  good, then t h e  
s o l u t i o n  may be assumed good. From s t r e a k  and K e r r - C e l l  

photographs, i t  seems t h a t  t h e  luminous f r o n t  i n  t h e  plasma 
pinch always propagates toward the c e n t e r  i n  a r e l a t i v e l y  smooth 
manner. Hence, most i n t e r e s t i n g  cases may be covered by assuming 
a pa rabo l i c  shock t r a j e c t o r y :  

1 
F 

Since t h e  r i g h t  hand s i d e  of the equat ion involves a second 

B L t  ut - - - 
2 Rs - L - -  

TO TO 

9 



or :  
2 

= l - A T  - B T  
xS 

A i s  the  i n i t i a l  nondimensional v e l o c i t y  of t h e  shock and B i s  
t h e  shock’s constant  acce le ra t ion  o r  deceleration toward the 

a x i s ,  depending upon whether B i s  p o s i t i v e  o r  negat ive,  
respec t ive ly .  S u b s t i t u t i n g  t h i s  shock t r a j e c t o r y  and equat ion (lo), 
modified for  t h e  nondimensional va r i ab le s  and shock t r a j e c t o r y ,  
i n t o  the  nondimensional master equation, we  f i n d  

2 =X 
S 

I’ 

a’ 

As a first approximation, i t  may be assumed t h a t  t h e  pressure  
does not change much b e t w e e n  the  shock and the p i s ton .  

we assume 

I n  e f f e c t ,  

2 1 - xs 
r 

T h i s  assumption i s  good when two condi t ions are m e t .  
must not be too  c l o s e  t o  the  ax i s .  
making l /x  la rge .  Secondly, t h e  second d e r i v a t i v e  of x with 
r e s p e c t  t o  Z should be small and p re fe rab ly  negat ive.  I f  

F i r s t ,  we 
Otherwise, x w i l l  be small ,  

.-I 

> 0, then t h e  denominator of the integrand of the l a r g e  a LX 

3?* 
i n t e g r a l  may approach zero. These condi t ions  are m e t  a t  l e a s t  
i n  t h e  beginning s t ages  of the p i s t o n ’ s  propagation. With t h i s  

10 



. 

assumption, equation (12) becomes 
2 1 - xs 

J 
a' 

which readily integrates to a first approximation for x 

where 

1 
Y 
- 

2 €#(A2 + 4 B )  Q =  
P 2 (  7 ' +  1) 

4 B  with P = 
A2 + 4 B  

In order to find the second approximation, we must substitute 
the second derivative of xfirst (@, t )  with respect to r into 

11 



t he  sud in teg ra l  of  
w i t h  r e spec t  t o  
primes, t h e  second 

- 9  2 

equat ion (14 ) .  Denoting a l l  f i rs t  d e r i v a t i v e s  
as primes and second d e r i v a t i v e s  a s  double 

de r iva t ion  may be w r i t t e n  as 

A+2B r )  - 4BX + Q ( G F "  + 2G'F  + G"F - G"H) 
S 

L e t t i n g  s - - we f ind  f o r  the d e r i v a t i v e s  used  above t h a t  - d '  

-2s-2 and G" 1 8 s B 2 ( 2 s + l )  ( A + 2 B 7 )  -2s -1  G '  = -4sB(A+2BT) 

F '  f P 2 ( s + l ) X s ( l  - PXS)'(A + 2 B 7 )  

From t h i s  po in t ,  we invoke a computer program t o  perform a 
numericai i n t e g r a t i o n  t o  determine a ascarid approximati~n. This 
program i s  shown and discussed i n  Appendix A. 

B. RESULTS FROM MASTER EQUATION 

Graphs showing the p is ton  t ra jector ies  f o r  a s t r a i g h t  shock, 
an a c c e l e r a t i n g  shock, and a dece le ra t ing  shock are shown i n  
Figs .  2, 3 ,  and 4. Two values of are used: 1.1 and 5/3. 
The la t te r  value i s  the  value f o r  Argon a t  s tandard temperatures 
and pressures .  Though t h i s  w i l l  not  be c lose  t o  t h e  real  value 
o f  7 a f t e r  t h e  Argon has experienced ion iza t ion ,  t h i s  value 

1 2  
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w i l l  s h o w  t h e  worst q u a l i t i e s  of t h e  master equation. As 

becomes l a r g e r ,  due t o  a l a r g e r  2 , the f i r s t  8-1 
& =  3Ti 

approximation becomes w o r s e  i n  t h a t  the  e n t i r e  i n t e g r a l  i s  
mul t ip l i ed  by a l a r g e r  number. Further ,  the  sub in teg ra l ,  which 
i s  neglected i n  t h e  f irst  approximation, i s  made more s i g n i f i c a n t  

. I n  t h e  pinch process,  a s  observed i n  t h e  

laboratory,  the Argon experiences f i r s t  and second ion iza t ion ,  
poss ib ly  even t h i r d ;  t h e r e f o r e ,  m u  c h of  t h e  e n e r g y  
a v a i l a b l e  i s  absorbed i n  t h e  ion iza t ion  process.  Hence, t h e  
real  value of 
than  t o  5/3. 

by t h e  factor’- 1 

d t h a t  may be expected would be c l o s e r  t o  1.1 

Figures 2, 3 ,  and 4 are based on a pinch t i m e  f o r  t h e  shock 
of 1.0 microseconds. T h i s  gives a convenient basis f o r  comparison. 
There is  no q u a l i t a t i v e  d i f f e rence  apparent i f  the  t i m e  s c a l e  i s  
expanded as may be seen f r o m  Fig. 5 which shows a pinch t i m e  of 
1.6 microseconds. Figure 2 shows a constant  v e l o c i t y  shock ( B  = 0)  

wi th  the  p i s t o n  pa th  computed f o r  
it is  seen  t h a t  t he  f i r s t  and second approximations f o r  t h e  p i s t o n  
t r a j e c t o r y  are very c lose  together  u n t i l  the p i s t o n  reaches a 
radial  p o s i t i o n  of 3/4. A t  t h i s  po in t ,  t h e  second approximation 
d iverges  from the  f i r s t  approximation and u l t i m a t e l y  t u r n s  back 

toward i t s  i n i t i a l  pos i t i on .  This occurs as t h e  denominator of 
t h e  integrand of the  master equation approaches zero,  beyond 
w h i c h  the second approximation is no longer ca lcu la ted .  Physical ly ,  
a decrease i n  t h e  denominator corresponds t o  a decrease i n  p re s su re  
a t  t h e  p i s ton .  It  is  l o g i c a l  t ha t  the pressure  decrease from the  

shock t o  t h e  p i s t o n  a t  a given t i m e  because i n  t h i s  region of  t h e  
flow, t h e r e  is, e f f e c t i v e l y ,  quasi-steady supersonic  flow i n t o  a 
converging channel, which i m p l i e s  a decrease i n  v e l o c i t y  and a 
corresponding adverse pressure grad ien t .  Since t h e  condi t ions  

behind t h e  shock are f ixed,  the pressure  a t  the p i s t o n  must be 
s t e a d i l y  decreasing as t h e  gap between the shock and p i s t o n  widens. 

d ’ =  1.1 and 1.667. For # =  1.667 
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When t h e  pressure a t  t he  p i s ton  face  reaches zero, t h e  model 
develops a s i n g u l a r i t y .  Note t h a t  f o r  

t r a v e l s  s l i g h t l y  more than ha l f  way t o  t h e  axis  of t h e  cy l inde r  
before  turn ing  around. 

2 = 1.1 the  p i s t o n  

Figure 3 shows t h e  r e s u l t s  f o r  an a c c e l e r a t i n g  shock. For 
2 = 1.1 t h e r e  is  no d i f f e rence  l a rge  enough t o  be seen  

between t h e  f i r s t  and second approximations u n t i l  t he  second 
approximation reaches the  z e r o  pressure  l i m i t .  This occurs a t  
x ( o  , 2 )  = .27.  Note t h a t  t h i s  r ad ius  i s  much smaller  than  t h e  
f i n a l  r ad ius  of t h e  p i s t o n  f o r  t h e  constant  v e l o c i t y  shock. 
This fact implies t h a t  t h e  p i s t o n  pushing an a c c e l e r a t i n g  shock 
has c o n t r o l  over t h e  shock f o r  a longer t i m e  than the  p i s t o n  
pushing a constant  ve loc i ty  shock. For  = 1,667, t h e  a c c e l e r a t i n g  
shock has a p i s t o n  path given by t h e  second approximation t h a t  
is  closer t o  t h e  center than the f i r s t  approximation. This i s  
due t o  t h e  e f f e c t  of t h e  sub in teg ra l  i n  t h e  master equation. 
That i s ,  i n  order  t o  acce le ra t e  t h e  flow, t h e  pressure  a t  t h e  
p i s t o n  must be g r e a t e r  than t h e  pressure  a t  t he  shock. For t h e  
f i r s t  approximation, t h i s  pressure d i f f e rence  i s  neglected.  I n  
t h e  second approximation i t  i s  included. This e f f e c t  i s  a l s o  
p re sen t  f o r  t he  a’ = 1.1 case: however, it i s  so  small  t h a t  i t  
cannot be seen on t h e  s c a l e  of Fig. 3 ,  

Figure 4 shows t h e  case of a dece le ra t ing  shock. There i s  
l i t t l e  new on t h i s  graph except t h a t  t h e  p i s ton  t u r n s  back even 
sooner than it does f o r  t he  constant v e l o c i t y  shock. 

C, METHOD O F  CHARACTERISTICS 

It is  of i n t e r e s t  t o  determine what t h e  real  p i s t o n  t r a j e c t o r y  
looks l i k e  a f t e r  t h e  t i m e  when t h e  f i r s t  and second approximations 
diverge.  A t h i r d  approximation was not  attempted because of t h e  
inhe ren t  l i m i t a t i o n s  on numerical c a l c u l a t i o n s  of t he  needed 
d e r i v a t i v e s .  Instead,  it w a s  decided t o  leave t h e  master equat ion 
and t o  at tempt  t o  f ind  a so lu t ion  by t h e  method of c h a r a c t e r i s t i c s .  

18 



If we make the  assumption of i s e n t r o p i c  flow behind the shock, 
we  may use the equat ions derived i n  o t h e r  re ferences .  *” 
i s e n t r o p i c  flow behind the shock, we  must l i m i t  ourse lves  t o  a 
l i n e a r  shock i n  t h e  r-t plane. T h i s  w i l l  be adequate t o  examine 
t h e  nature  of t h e  divergence of t h e  prev ious ly  found f i rs t  and 
second approximations. 

To have 

It i s  f i r s t  i n s t r u c t i v e  t o  consider  t h e  problem of one- 
dimensional, unsteady, i s en t rop ic  flow i n  r ec t angu la r  coord ina tes  
with no a rea  change. For t h i s  problem, it i s  known t h a t  t h e  
c h a r a c t e r i s t i c  d i rec t ions  i n  t h e  t -x  plane are u + c and u - c 
w h e r e  u i s  the l o c a l  flow ve loc i ty  and c i s  the l o c a l  sound speed. 
I f  a p i s t o n  is  pushed down a tube i n  such a manner as t o  set  up 
a s t rong  shock propagating ahead of it, u and c w i l l  remain 
constant  throughout t h e  flow f i e l d  a s  long as the p i s t o n  v e l o c i t y  
i s  constant .  From t h e  strong shock r e l a t i o n s ,  u and c are 
ca l cu la t ed  t o  be 

u = # + l  2 u  

w h e r e  U is  the v e l o c i t y  of the  shock. I n  t h i s  problem, t h e  
p i s t o n  v e l o c i t y  is equal  t o  the flow ve loc i ty .  
F ig .  6 shows a p i s t o n  t r a v e l i n g  a t  a speed of u - 3/4 pushing 
a s t rong  shock w i t h  speed U = 1. A s  seen from t h e  f igu re ,  t h e  
l a s t  s i g n a l  t h a t  may be s e n t  from the p i s t o n  and received by the 

shock before  the shock reaches x = 1 must  leave t h e  p i s t o n  before  
t h e  p i s t o n  is  a t  x = %. Thus t he  p i s t o n  lo ses  contac t  w i t h  t h e  
shock af ter  t h e  p i s t o n  has propagated half  way i n t o  t h e  m e d i u m .  
The similar problem posed i n  c y l i n d r i c a l  coordinates  becomes 
s l i g h t l y  more d i f f i c u l t .  The equat ions governing one-dimensional, 
unsteady, i s e n t r o p i c  flow i n  c y l i n d r i c a l  coordinates  from the  

Euler ian  viewpoint are wr i t ten :  

For d =  1.667, 

+ - -  - 0  a9 P u  + -  W U ,  
Mass conservat ion 
o r  con t inu i ty  a r  a t  r 
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3P au a u  
at + - -  - 0  + u -  -- momentum o r  1 

Newton's Law P a r  a r  

i s e n t r o p i c  
r e l a t i o n  

p e r f e c t  gas 
r e l a t i o n  

P - -  
Pd - constant 

P R  P =  

2 dP c = -  and sound 
speed dP 

These equat ions may be put i n  a more u s e f u l  form a s  shown by 
Courant and F r i ed r i chs .  12 

P U  Continui ty  pt + up, + p u r  + - = 0 r 

2 Newton's Law C P ,  + p u  ur + P u t  = 0 

sound speed c2 = c o n s t a n t p  b'- f 

where t h e  s u b s c r i p t s  here  denote p a r t i a l  d i f f e r e n t i a t i o n  with 
respect t o  t h e  subsc r ip t .  The shock condi t ions apply across t h e  
shock t r a j e c t o r y  Rs = L - At: 

2A 
a+ 1 u1 = - 90, p, = 7 
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~ giving 

By the normal recipe outlined in Appendix B, we f,nd the 
characteristic equations to be 

I: dr = (u t- c) dt 11: dr - ( u - c) dt 

uc dt = 0 uc 2 dc + - dt = 0 11: du - - $1: du + - r 8-1 dc - r. 2-1 

These equations are exactly the same as those for one-dimensional, 
isentropic, unsteady flow with constant area, except for the term 

- dt which adds the only complication to the problem. Once r 
again we must resort to a computer program to find the solution, 
The program used may be found in Appendix C along with some 
comments on its structure, 

uc 

D. RESULTS FROM CHARACTERISTICS 
In Fig. 7 are shown the prescribed shock path, the piston 

trajectory as found from the method of characteristics, and three 
characteristic lines. The graph is drawn for 3' = 1.667. ir' we 
consider the characteristics to ran backwards from the shock to 
the piston, we note that they bend in such a manner as to intersect 
the piston trajectory much earlier than they would have if they 
had remained straight. Turning this around so that the 
characteristics run forward in time, we find that the piston 
loses control of the shock much sooner in the imploding cylindrical 
piston problem than it does in the constant-area piston-shock 
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problem. Spec i f i ca l ly ,  t h e  p i s t o n  lo ses  c o n t r o l  of t h e  shock 
by t h e  t i m e  t h e  p i s t o n  i s  only about % of t h e  way toward t h e  
cen te r  of t h e  cy l inder .  Recall t h a t t h i s  is  t h e  same d i s t ance  
t h a t  t h e  f i r s t  and second approximations t o  t h e  master equat ion 
f o r  a l i n e a r  shock coincided. When t h e  r e s u l t s  from the  
approximate method are compared t o  t h e  r e s u l t s  obtained by 
t h e  method of c h a r a c t e r i s t i c s ,  it i s  seen t h a t  t h e  p i s t o n  
t r a j e c t o r i e s  f o r  t h e  given shock compare cxac t ly .  The longest  
c h a r a c t e r i s t i c  l i n e  shown i n  t h e  f i g u r e  i n t e r s e c t s  t h e  shock 
only a t  x = -35, because the program d i d  not produce any 
c h a r a c t e r i s t i c  l i n e s  t h a t  extended f u r t h e r .  These l i n e s  w e r e  
not  produced due t o  convergence problens f o r  t h e  po r t ion  of t h e  
cy l inde r  c lose  t o  t h e  a x i s .  Even the  longest  C h a r a c t e r i s t i c  
l i n e  i s  c u t  o f f  before  it reazhes the  shock: t h i s  is  a l s o  due 
t o  a f a u l t  of t h e  program. However, by e s t ima t ing  t h e  pa ths  of  
f u t u r e  c h a r a c t e r i s t i c  l i n e s ,  i t  appears a s  though t h e  f a t e  of 
t h e  shock i s  determined by t h a t  po r t ion  of t h e  p i s t o n ' s  t r a j e c t o r y  
t h a t  i s  very c l o s e  t o  t h e  beginning. Af t e r  t h i s  very e a r l y  
c o n t r o l  of t h e  shock by the p i s ton ,  i t  matters not  what pa th  
t h e  p i s t o n  takes .  Any message t h a t  i s  s e n t  ou t  from the  p i s t o n  
toward t h e  shock a f t e r  t h e  p i s ton  has t r ave led  more than & of 
t h e  way coward t h e  cen te r ,  w i l l  not be received by t h e  shock 
before  t h e  shock reazhes the cen te r  of t h e  cy l inder .  This 

Y - - - - I - - d i scuss ion  has been f o r  4 = i.667. FOT u aAiy  aittailer, t he  

p i s t o n  would c o n t r o l  t h e  shock f o r  a longer per iod of  time, 
b u t  would behave q u a l i t a t i v e l y  t h e  same. 

J 

E. 1NTE.WRETATION 

W e  now know t h a t  t h e  diverging p o r t i o n  of t h e  f i r s t  and 
second approximations t o  the master equat ion s o l u t i o n  f o r  t h e  
s t r a i g h t  shock does no-c have phys ica l  relevance. However, t h e  
p o r t i o n  3: the two approximations t h a t  do coincide i s  t h e  trile 

s o l u t i o n  f o r  t h e  p i s t o n  dr iv ing  t h e  p re sc r ibed  s t r a i g h t  shock. 
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Any answer from t h i s  time on  must no t  be considered accu ra t e  
unless  some f u r t h e r  boundary condi t ion  i s  prescr ibed .  

When t h i s  argument is  extended t o  t he  a c c e l e r a t i n g  and 
dece le ra t ing  shock t r a j e c t o r i e s ,  it would seem t o  imply t h a t  
where t h e  f i r s t  and second approximations a r e  very c lose  
toge ther ,  t h e  s o l u t i o n  i s  good f o r  t h e  given boundary condi t ion.  
Referr ing t o  Fig. 2, 3 ,  and 4 it i s  seen t h a t  f o r  a given pinch 

t i m e  and f o r  a given d , an a c c e l e r a t i n g  shock i s  c o n t r o l l e d  
m o r e  by i t s  p i s t o n  than is  a d e c e l e r a t i n g  shock. 

25 



111. SUMMARY 

The t w o  major conclusions from t h i s  a n a l y s i s  are given 

some q u a l i f i e d  endorsement by experimental  observat ions.  
F i r s t ,  t h e  small s epa ra t ion  between t h e  p i s t o n  and shock f o r  
t h e  low 
with t h e  experimental  i n a b i l i t y  t o  d i s t i n g u i s h  a shock f r o n t  
from t h e  in t ense  luminosity of  t h e  cu r ren t  shee t  on s t r e a k  and 
K e r r - C e l l  photographs. The theory  suggests  t h a t  i f  such 
sepa ra t ion  i s  t o  be observed, it w i l l  be most ev ident  i n  cases  
of r a p i d l y  dece le ra t ing  f ron t s .  These cases have not  been 
s t u d i e d  i n t e n s i v e l y  i n  t h e  p a s t  because of t h e i r  low dynamic 
e f f i c i e n c i e s  f o r  propuls ion purposes. 

d cases evident  i n  Figs .  2-5 i s  not  i n c o n s i s t e n t  

Second, t h e  p red ic t ion  t h a t  t h e  shock t r a j e c t o r y  is  

determined by t h e  very e a r l y  p o r t i o n  of t h e  p i s t o n  pa th  concurs 
wi th  t h e  observed i n s e n s i t i v i t y  of  t h e  pinch processes  t o  t h e  
na tu re  of t h e  inner  por t ions  of  t h e  e l ec t rodes .  I n  many 
experiments, a l l  bu t  t h e  ou te r  inch of e l ec t rode  has been 
replaced by g l a s s ,  o r  removed e n t i r e l y ,  with m i n i m a l  e f f e c t  
on t h e  development of t h e  pinch p a t t e r n .  1 

Clear ly ,  t h e  d e f i n i t i v e  experiments must involve a p o s i t i v e  
i d e n t i f i c a t i o n  of t h e  shock f r o n t s  i n  r e l a t i o n  t o  t h e  c u r r e n t  
shee t s ,  presumably by s e n s i t i v e  pressure  gauges. Such 

L A I F j . A . l L  A G S U I L . J  b T i l l  2 - e - L -  -...-.-A ...Ll-* ‘ 
C A ~ G L L I U C ~ I L ~  a A e  L u u l L e i i L A y  i i i  ~ I O ~ I ~ S S ,  2nd +Ln’v * n n ~ ~ ’ + ~  
soon be compared with t h i s  theory. 
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APPENDIX A 

The following discussion concerns the numerical solution of 
the nondimensional master equation, equation (141, given a 
parabolic shock trajectory. I f  the shock has a constant 
velocity, B = 0, then P = 0, making Q = 00 in equations (16). 
Therefore, the equations must be recast for the degenerate 
case of B = 0. Equation (14) becomes 

2 1 - x- 
I 

a' 

a 

f 
A L  

1 - xL 
S r 

da' 

For the first approximation, neglecting the subintegral, eq. (14') 
integrates to 

2 = x  2 + € ( l - X s ) - & 8  2 
first S 

X 

When Xfirst is substituted back into (14'1, xsecond is 
be 

2 1 - X" 

2 2 &  
R 

Q -L (F - a") - (F - a') 
X second= 'f [ 

found to 

A- 1 



where 

2 
(1- € 1 xs 

and F = R +  1 ( 1 7 ' )  
€ 

, R =  Q = l + E + L  - - x," 
€ 

The a c t u a l  program used appears a t  t h e  end of t h i s  d i scuss ion .  
The card numbers shown are found a t  t h e  end of each card p r i n t o u t .  
Cards numbered from 90 t o  930 a r e  f o r  t h e  equat ions (14), ( 1 5 ) ,  

(16), (17), and (18). Cards numbered from 940 t o  1440 a r e  f o r  
equat ions (14'), (15'), ( 1 6 ' )  and (17'). The program was run 
f o r  A = .999 and B = .001 and w a s  a l s o  run f o r  A = 1 and B = 0. 

The answers w e r e  t h e  s a m e  t o  t h r e e  s i g n i f i c a n t  f i gu res .  The 
genera l  philosophy of  t he  program i s  f i r s t  t o  determine what 
t i m e  s t e p s  t o  u s e ,  and then when t h e  t i m e  s t e p s  are known, t o  
c a l c u l a t e  a l l  q u a n t i t i e s  t h a t  a r e  dependent only upon t i m e  f o r  
t h e  f i r s t  A C  . Then, a t  t he  t i m e  under cons idera t ion ,  t h e  
q u a n t i t i e s  t h a t  depend on g a r e  ca l cu la t ed .  S p e c i f i c a l l y ,  t h e  
value of t h e  integrand f o r  la' = as is  f i r s t  ca l cu la t ed  ( t h e  
s u b i n t e g r a l  is  zero  a t  t h i s  p o i n t ) .  Then t h e  values  of  f o r  
which we want t h e  p a r t i c l e  pos i t i ons  s p e l l e d  out  a r e  determined. 
The program does t h i s  by taking g s ,  rounding it  o f f  t o  t h e  next 

lowest .05, and then using L\@ i n  s t e p s  of -05, t h e  s t e p s  f o r  
which the  two numerical i n t e g r a t i o n s  a r e  performed. The 
s u b i n t e g r a l  i s  found f o r  t he  i n t e r v a l  from gS t o  t h e  next lower 
g .  With t h i s  value of t h e  subin tegra l ,  t h e  t o t a l  i n t e g r a l  may be 
Eound g iv ing  x f o r  t h e  rounded o f f  and t h e  t i m e  A 2 . Using 

t h e  next lower value of a, the  next p o r t i o n  of t h e  s u b i n t e g r a l  
i s  added t o  t h e  value obtained above. S imi l a r ly ,  t h e  next  
p o r t i o n  of  t h e  e n t i r e  i n t e g r a l  i s  added on t o  t h e  p a r t  a l r eady  
found. This procedure i s  c a r r i e d  on u n t i l  we reach t h e  value 

= 0, which i s  t h e  p is ton .  A t  t h i s  t i m e ,  we proceed t o  t h e  
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next t i m e  and repea t  t h e  e n t i r e  process.  B e l o w  a r e  some 
comments on some cards  t h a t  may not be obvious. 

Number Come n t s 
Card 

85 I f  t h e  shock is l i n e a r ,  B = 0, c o n t r o l  i s  t r a n s f e r r e d  

- 

t o  s ta tement  200, card #940, t o  avoid d iv id ing  by 
zero  a s  mentioned above. 

13 0 TMAX is the  pinch t i m e  of t h e  shock. 

140 R is  t h e  c o e f f i c i e n t  of t h e  sub in teg ra l .  

180 DELTAU i s  t h e  t i m e  s t e p  used. 

260 G 1  = G I ,  G2 = G " ,  e tc.  

310,320 E and W a r e  the  p a r t s  of  xI ' /x  t h a t  depend only  
upon t i m e .  

t h a t  depends only upon t i m e .  XT i s  t h e  p a r t  of  xfirst 

P H I S  = j8 t h e  value of j8 a t  t h e  shock a t  t h e  t i m e  TAU. 

HS i s  t h e  value H ( g s ) .  

2 330 

340 

370 

380 GR = xII/x a t  t h e  shock. 

S 

390 GAR i s  t h e  value of t h e  integrand a t  t h e  shock. 

410 I f  t h e  d i f f e rence  be tween $8 and 0 i s  s m a l l ,  t hen  
the  whole i n t e g r a l  w i l l  be Berformed i n  one s t e p .  

420 HO i s  t h e  value H ( 0 ) .  

440 PF is  t h e  value of  xI'/x a t  j8 = 0. 

460 PAM i s  t h e  value of t h e  in tegrand  a t  j8 = 0. 

530 I f  t h e  d i f f e rence  between flS and 0 i s  la rge ,  then 
t h e  i n t e g r a l  w i l l  be computed i n  s t eps .  

540 F i r s t  t h e  i n t e g r a l  i s  evaluated from 8, t o  SIGMA. 

650, 660 GR and GAR a r e  replaced by PF and PAM r e s p e c t i v e l y  
f o r  t h e  next  p a r t  o f  t h e  i n t e g r a t i o n .  

7 15 I f  t h e  denominator of t h e  integrand i s  zero  o r  
negative,  con t ro l  i s  switched t o  card #820. 
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C a r d  
Number 
- 

Comments 

750 

8 20 

940-1440 

I f  SIGMA is equal t o  zero,  then  the p i s t o n  p o s i t i o n  
has  been ca lcu la ted  f o r  t h i s  t i m e ,  i n  which case 
t h e r e  i s  a spec ia l  p r i n t  out ,  TAU i s  increased by 
DELTAU and t h e  e n t i r e  i n t e g r a t i o n  i s  performed 
again.  Otherwise, t h e  value XFIRST, XSECOND, and 
a’ = S I G M A  a r e  p r in t ed  ou t  followed by the  next  
s t e p  of t h e  in t eg ra t ion .  

Since the  pressure,  according t o  the second 
approximation, is now zero  3r negat ive,  card  #715, only 
t h e  f i r s t  approximation i s  ca l cu la t ed  and p r i n t e d  by 
card #920. 

The same procedure i s  followed except t ha t  it i s  
s impl i f i ed  by having a l i n e a r  shock and no 
sub in teg ra l .  The equat ions  f o r  t h i s  po r t ion  are 
shown i n  the  i n i t i a l  p a r t  of  t h i s  Appendix. 



C G L E N  A. R O W E L L - - A P P R O X I M A T E  S O L U T I O N  T O  T H E  M A S T E R  E Q U A T I O N  
10 F O R M A T  ( 3 F 2 0 . 4 )  
2 0  FORMAT ( 3 H  A z F 7 . 4 ~ 4 H  B = F 7 . 4 , 8 H  G A M M A = F 6 . 3 , 1 0 H  E P S I L O N = F 6 . 4 ,  

1 7 H  T M A X = F 9 . 6 / / )  
30  F O R M A T ( 5 3 P l  F I R S T  AND SECOND A P P R O X I M A T I O N  T O  T H E  P I S T O N  P A T H / / )  
40 F O R M A T  ( 5 H  T A U = F 7 . 4 7  1 3 H  X s = F 6 . 4 ,  1 5 H  P H I  S = F 6 . 4 )  
5 0  F l l R M A T  ( 3 F 2 0 . 6 )  
60 F O R M A T  ( 2 X 1 7 H X F I R S T = F 8 * 6 , 1 3 H  X S E C O N D = F  8 06 7 1 O H  T A U = F 7 . 4 ,  

1 6 t i  P H I = F 4 . 2 / / )  
6 1  FCIRI.lAT ( l H O / / /  1 
65  F O R ~ ' I A T ( ~ H  X S = F ~ . ~ T  13H X F I R S T = F 7 . 4 ,  1 0 H  T A U = F 8 . 4 / )  
18 R E A D  1 0 1 A p  B, GA:II.'A 

P R I N T  30 
I F ( B )  12, 2009 12 

1 2  S = l./GAPIi. lA 
P = 4 . * 8 / ( A * A + 4 . 3 + H )  

Q = 2 . " E P S L @ N * G A M l ' , A a ( A * A + 4 . ~ ~ ~ ) * ~ S / (  P * P * ( G A f l F i A + l . )  ) 

R = 1. / (2.3-(  l . - t P S L O i \ l )  1 

E P S L O N  = (  1 . - S I  / (  l . + S )  

8 T i l A X  = ( - A + S ( ~ K T F ( A 9 A + 4 . 9 0 )  ) / ( 2 . * 6 )  

P R I N T  2 0 ~ 4 ~  S T  GAC:PlA( EPSL[)I\I, TMAX 
NI'IAX = T M A X ~ ~ ~ O .  
TAUF lAX = N\IMAX 

T A U  = D E L T A U  
D E L T A U  = TAIJ i?AXs* .O025  

3 X S  = ~ . - A x - T A U - B G T A U + G ~  
U = A + Z . * B * T A U  
v = U*U 
Y = 1. - P n X S  
z = Y * * S  
G = U * * ( - Z . * S )  

G 2  = ~ ~ . Q S * B * B * ( S + . ~ ) * G / V  
G 1  = - 4 . * S * B * G / U  

F = P * X S * Z * Y + Z * Y * Y / ( S + Z * )  
F 1  = P * P * ( S + l .  ) * X S - z Z + U  
F 2  = - P * P * ( S + l .  ) * Z * ( V - P * S * X S * V / Y - Z . ~ ~ B * X S )  
E = 2 o * V - 4 o * B * X S + Q * ( G * F 2  + 2 . * G l * F l  + G 2 * F )  
W = Q * ( G * F l + G l * F ) - Z . * X S * U  
X T  = X S * * 2  + Q*G*F  
P H I S  = l . - X S * Q Z  
P R I N T  401 T A U T  X S T  PHIS 
RS = P * S Q R T F ( l . - P H I S )  
HS = RS9(1.-RS)**(S+l.)+(lo-RS)**(S+Zo)/(S+2o) 
G R = 
GAR = ( ( A s A + 4 o * B * ( l . - X S ) ) / V ) * ~ S  
L = 2 0 . * P H I S  

( E -d i t  G 2*  H S 1 / ( 2 *X  S * *  2 1 - ( N-Q* G 1 * H S  1 Q * 2 / ( 4 * X S 994 1 

I F ( L - 1 1  70, 707 80  
70 H O  = P*(l.-P)*Q(S+l.)+(l.-P)~~~(S+Zo)/(S+20) 

X F  IKST = S'ORTF ( X T - Q * G * H O  1 
P F  = ( E  - Q * G Z * H 0 ) / ( 2 . * X F I K S T ~ * Z )  - ( W  - Q s G l * H 0 ) ~ . * 2 / ( 4 . 9 X F I R S T * * 4 )  
S U B I N T  = ( P F  + G K ) / 2 . * P H I S  
P A M  = ( A * A / ( V - S U B I l l T * R )  ) * * S  
B I G I N T  = (PA14 + G A K ) / 2 . * P H I S  
X = S O K T F ( X S * X S  + E P S L O N * B I G I N T )  
P H I  = 0 . 0  
P R I N T  60, X F I R S T ,  X, TAU, P H I  
T A U  = T A U  + D E L T A U  
GO T O  3 

S I G M A  = Cs.05 
R S I G C l A  = P * S d ) R T F (  l . - S I G I l A )  

8 0 C = L  

A- 5 

0 
10 
20 
2 1  
30  
40 
5 0  
60 
6 1  
6 4  
6 5  
7 0 
8 0  
8 5  
90 
100 
110 
1 2 0  
130  
140 
1 5 0  
160 
170 
180  
190 
2 0 0  
2 10 
2 2 0  
230  
2 40 
2 5 0  
2 60 
2 7 0  
2 8 0 
2 9 0  
300 
3 10 
3 2 0  
3 3 0 
3 40 
3 5 f i  
360  
3 7 0  
3 8 0  
390 
40 0 
410 
4 2  0 
4 3 0  
440 
450 
460 
470 
48 0 
490 
500 
5 10 
520 
5 3 0  
540  
5 5r1 

I 



H S I GM A = R S I G MA * ( 1 . -R S I GM A 1 * * ( S+ 1 
X F I R S T  = S Q R T F ( X T - Q - % G * H S I G N A )  
P F = 

S I J B I N T  = ( P F  + G K ) / 2 . - x ( P H I S  - S I G M A )  
P A M  = ( ( A * A  + 4.*8*(1.  - S O R T F ( 1 .  - S I G M A ) ) ) / ( V  - R * S U B I N T ) ) ~ S - S  
B I G I N T  = (P.AI l  + G A K ) * . 5 * ( P H I S  - S I G M A )  
X = S O R T F ( X S * X S  + E P S L O N * B I G I N T )  

SI(;''.lA = S I G M A  - .05 

G A R  = P A M  
K S I G L l A  = P * S Q R T F (  l . - S I G M A )  
HS I G i i A  = K S I GblA * ( 1 . -K S I GbiA 1 Q * ( S +  1.) + ( 1. - K S  I GNA 1 " 0  ( S +2 . 1 / ( S +  2 1 
X F I R S T  = S L I R T F ( X T - O * G * H S I G M A )  
P F  = ( E - Q Q ~ ~ * H S I G I V I A ) / ( ~ . G X F I ~ S T * + F ~ ) - ( ~ ~ - [ ~ G G ~ ~ H S I ~ ~ . ~ A ) * * ~  

S I J B I i d T  = S U B I I I T  + ( P F  + G R ) / 4 0 .  
I F  ( V - K * S U B I I \ 1 T  1 120,120, 87 

B I G I N T  = B I G I N T  + ( P A N  + G A K ) * . 0 2 5  

I F  ( S I G i 4 A )  100, 901 100 
100 P R I N T  50, X F I R S T ,  X, S1Gi " iA  

+ ( 1 -R S I GPi A 1 + * ( S + 2 / ( s + 2. 

( E - Q * G 2 i s H S  I GMA 1 / ( 2 0 X F  I R S T S  +F 2 1 - ( W-O*G l * H S  I G N A  1 9% 2 
1 / ( 4 . * X F I K S T * * 4 )  

P R I N T  50, X F I R S T ,  X, SIGIVlA 

!<5 GK = PF 

1 / ( 4 * * X F I R S T G * 4 )  

87 P A M  = ( ( A * A  + 4 . * B * ( l .  - S Q R T F ( 1 .  - S I G M A ) ) ) / ( V  - R * S U B I N T ) ) * * S  

X = S Q K T F ( X S + * X S  + E P S L C J l ~ l * B I G I I \ I T )  

S I G M A  = S I G M A  - 005 
GO T O  85  

90 P R I N T  60, X F I R S T ,  X c  T A U ,  S I G N A  
110 T A U  = T A U  + D E L T A U  

1 2 0  P K I I V T  6 1  
I F  ( T A U  - T M A X )  39 1 8 1  18 

H = P ~ ( l . - P ) * ~ ( S + l . ) + ( l . - ~ ) * * ( S + Z ~ ) / ( S + 2 ~ )  
X F I R S T  = S Q R T F ( X S * X S  + Q * G * F  - Q * G * H )  
P R I N T  65, XS, X F I R S T ,  T A U  

130 T A U  = T A U  + D E L T A U  
G = ( A  + 2 0 * B * T A U ) * * ( - 2 . * S )  
X S  = 1. - A + T A U  - B * T A U * * 2  
F = P * X S - > ( l .  - P * X S ) * - % ( l . + S )  + ( l . - P * X S ) * * ( 2 . + S ) / ( 2 . + S )  
H = P ~ ( l . - P ) * * ( S + l . ) + ( l . - P ) 3 a O / ( S + 2 o ) / ( S + 2 0 )  
X F I R S T  = S Q R T F ( X S + : X S  + Q*G*F  - Q * G s H )  
P R I N T  65 ,  XS,  X F I R S T ,  T A U  

i6, iij I F  ( s n " - ~ p l A j ( j  1 3 6 ,  
200 S = l . / G A K ? l A  

E P S L U i t l  = (  l o - S ) / (  1 . + S )  
T i4AX = 1 . / A  
P R I N T  2 0 , A t  8 ,  GAi.iixIAt t P S L O N ,  T M A X  
N M A X  = 20 .?>TMAX 
T A U H A X  = lVI*iAX 

T A U  = O E L T A U  
D E L T . A U  = TAUbIAX* .OU25  

4 X S  = 1. - A * T A U  
X F I R S T  = S Q R T F  ( (1 .  - E P S L U N )  * X S * * 2  + E P S L O N  

R = (1. - E P S L O N ) * X S * X S / E P S L O N  
F = K + l .  

P R I N T  40, TAU,  XS,  P H I S  
GR = ( 2 . * E P S L U N / ( Q  - L U G F ( F - P H I S )  - K / ( F - P t - i I S )  1 )< - * -S  
L = 2 0 . * P t l I S  
I F ( L - 1 ) 1 7 0 , 1 7 0 , 1 8 0  

B I G I N T  = ( R O + G K ) * P H I S / 2 .  

Q = 1. + E P S L O N  + L U G F ( X S - > X S / E P S L O N )  

P H I S  = l . - X S * * 2  

170 K O  = ( 2 . * E P S L O N / ( Q - L O G F ( F )  - R / F ) ) * * S  

A- 6 

560 
5 7 0  
5 8 0  
58 1 
5 Y 0  
600 
610 
6 2 0  
6 3 0  
640 
650 
660 
670 
68 0 
690 
700 
70 1 
7 10 
7 1 5  
7 20 
730 
740 
7 50 
760 
770 
780 
790 
800 
8 1 0  
8 2 0  
8 3 0  
8 40 
8 50 
8 60 
870  
880 
8 9 0 
900 
9 10 
9 2 0  
9 3 0  
9 40 
9 5 0  
960 
5 7 0  
980 
4 'I 0 
1000 
10 10 
1020 
1030 
1040 
1050 
1060 
1070 
10;30 
10y0 
1100 
11 10 
1120 
1 1 3 0  



. 

X = S O K T F ( X S * X S  + E P S L U 1 ~ 1 * B I G I i \ J T )  
P H I  = 0.0 
P F I N T  609 X F I K S T ,  X t  T A U ,  P H I  
T A U  = T A U  + D E L T A U  
GO T O  4 

180 C = L 
P h I  = C c . 0 5  
P F  = ( 2 . * E P S L O N / ( u  - L O G F ( F - P H I  ) - R / ( F - P k I I  ) ) ) s - > S  

X = S ( J R T F ( X S i * X S  + t ? S L U i J * b I G I i d T )  
B I G I r d T  = ( P F + G R ) * ( P H I S - P H I  1 /20 

X 1  = S U R T F ( ( l . - E P S L O N ) ~ X S a f i 2  + E P S L O I \ ~ * ( l o - t . " I ) )  
P d I N 1 '  509 X l t  X, P H I  

1 8 5  GK = P F  
PI11 = P H I  - 005 
Z = U - L O G F ( F - P H I ) - K / ( F - P H I )  
I F ( Z )  3 0 0 ,  3 0 0 ,  182  

1 8 2  P F  = ( 2 . * E P S L O N / Z ) * * S  
E I G I t J T  = B I G I N T  + ( P F + G K ) c . 0 2 5  
X = S Q K T F ( X S * X S  + E ? S L O ~ J ~ ~ B I G I N T )  
I F ( P H 1 )  1 9 0 ~ 1 9 0 , 1 1 0 0  

1100 X 1  = S Q K T F (  ( ~ ~ - E P S L O I V ) - > X S * * ~  + E P S L U I \ I ~ > ( l . - P H I  1 )  
P R I N T  5 0 ,  Xl.9 X, P H I  
GO T U  1 8 5  

190 P K I I V T  6 0 ,  X F I K S T ,  X T  TAU,  P H I  
1110 T A U  = T A U  + D E L T A U  

I F  ( T A U  T l '4AX)  4 ,  18, 18 

Pi(1IdT 6 5 ,  X S T  XI T A U  

X S  = 1. - A * T A U  . 
I F  ( T A U - T M A X )  3 0 0 ,  18,  18 
E N U  

300 X = S Q K T F (  (1 .  - E P S L O N ) * X S * s 2  + E P S L O N )  

T A l J  = T A U  + D E L T A U  

1140  
1150 
1160 
1170 
1180  
1 1 9 0  
1200  
1 2 1 0  
1 2 2 ( J  
1230  
1240  
1250  
1260  
1270 
1280  
1236 
1300  
1310 
1320  
1330  
1340  
1350  
1360  
1 3 0  -I 
1 3 8 0  
1390  
1400  
1410 
1420  
1430  
1440  
1450  
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APPENDIX B 

' .  

The equations f o r  cont inui ty ,  Newton's l a w ,  and sound 

speed are 

pt + u p r  + p u r  + - P U  = 0 
r 

c2 = constant  p a- I 

The equation f o r  t h e  speed of  sound may be d i f f e r e n t i a t e d  t o  
y i e  Id  

S u b s t i t u t i n g  t h i s  i n t o  t h e  t w o  p a r t i a l  d i f f e r e n t i a l  equat ions,  
we f i nd  

= o  2c 
8 -  1 u + uur + t 

uc + 2u c + - = o  2 cu + r J -  l C t  1 - 1  r r 

I n  order  t o  f ind  t h e  c h a r a c t e r i s t i c  d i r e c t i o n s  for  t h i s  
pa i r  o f  equations,  we form an a r b i t r a r y  l i n e a r  combination of  
them by mult iplying t h e  f i r s t  equat ion by a and adding them. 1 2 , u  

2 2 h c  + uc L = A u t  + ( A u  + C ) U r  + J -  Ct +(- 
W e  a s k  t h a t  t h i s  l i n e a r  combination produce d i r e c t i o n a l  
d e r i v a t i v e s  of u and c i n  t h e  s a m e  d i r ec t ions .  These d i r e c t i o n s ,  
which depend upon r and t as  w e l l  as t h e  values o f  u and c a t  

the p o i n t  r, t, are t h e  c h a r a c t e r i s t i c  d i r ec t ions .  For example, 
t h e  d e r i v a t i v e  of u is taken i n  t h e  d i r e c t i o n s  



If the derivative of c is taken in the same direction, it means 
that 

2 
dt 

)(u + c 2 A c ,  2u dr 
- -  - - # -  1 - A 

T 2- 1 2- 1 

Solving the first equality for A 8 we find that 

Hence there are two characteristic directions 

dr = (u + c) dt and dr = (u - c) dt 

Substituting A = 1 and u + c = - dr into L, we find dt 

or 

2 * uc L = -  + - = o  8 -  1 dt r d' + dt 

This is the characteristic equation that corresponds to the 
characteristic direction given by A = 1. Similarly, for 
h = -1, we find the characteristic equation to be 
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APPENDIX C 

The genera l  philosophy of t h i s  program is  t o  c a l c u l a t e  from 
t h e  c h a r a c t e r i s t i c  equations,  equat ions (201, t h e  c h a r a c t e r i s t i c  
d i r e c t i o n s  and t h e  values  of t h e  v e l o c i t y  and sound speed on a 
g r i d  i n  t he  r-t plane. One set of g r i d  l i n e s  i s  p a r a l l e l t o  t h e  
shock t r a j e c t o r y  a t  i n t e r v a l s  of  DT. The o t h e r  set  i s  
perpendicular  t o  t h e  r a x i s  and i s  spaced a t  i n t e r v a l s  of DR. 
The p i s t o n  p o s i t i o n  i s  ca l cu la t ed  from t h e  flow v e l o c i t y  of t he  
p a r t i c l e  t h a t  began a t  x = 1. Note t h a t  t h e  flow v e l o c i t i e s  a r e  
negat ive s i n c e  t h e  flow d i r e c t i o n  i s  i n  t h e  -r d i r e c t i o n .  The 
no ta t ion  used i s  shown i n  the f igu re  below 

T 

X 
v 

Figure 8 

UI refers t o  t h e  average flow v e l o c i t y  along t h e  c h a r a c t e r i s t i c  

I. 
a t  t h e  p o i n t  A and UP a t  the po in t  P. S imi l a r ly  U I I  i s  t h e  
average flow v e l o c i t y  along a I1 c h a r a c t e r i s t i c .  C I ,  C I I ,  R I ,  

That is  U I  = %(UA + UP), where UA r e f e r s  t o  t h e  flow v e l o c i t y  

c-1 



and R I I  are the average sound speeds and pos i t i ons .  The 

q u a n t i t i e s  RA, UA, CA, TA, W,. . ., RB,. .., RK, .. . are t h e  values  
of t h e  pos i t i on ,  flow ve loc i ty ,  sound speed, and t i m e  a t  t h e  
p o i n t s  A, P, B, and K. I n i t i a l l y ,  t h e  p i s t o n  p o s i t i o n  i s  found 
by assuming U P  = U, t h e  ve loc i ty  behind the shock. Having t h i s  
pos i t i on ,  I and I1 c h a r a c t e r i s t i c s  are found assuming UI = U - U I I  

and C I  = C = C I I  where C i s  the  speed of sound immediately 
following the  shock. With t h e  i n i t i a l  assumption t h a t  DELCI, 

A C  along t h e  I c h a r a c t e r i s t i c ,  i s  zero,  DELUI, t h e  change i n  
flow v e l o c i t y  along t h e  I c h a r a c t e r i s t i c  may be found from t h e  
c h a r a c t e r i s t i c  equat ions.  W i t h  t h i s  information, DELUII  may be 

found. Then DELCII  may be ca lcu la ted .  With a l l  t h i s  information, 
a new UP and CP may be found. F ina l ly ,  a new average flow 
v e l o c i t y  of the p i s t o n  may be found g iv ing  a new p i s t o n  pos i t i on .  
Meanwhile, t h e  new values of U I  are compared t o  the o l d  values  
t o  determine whether t h e  procedure should be done again.  
Fur ther ,  t h e  new values of RP and TP a r e  a l s o  compared. When 
t h i s  has been done, t h e  f i r s t  g r i d  po in t  on t h e  l i n e  p a r a l l e l  
t o  t h e  shock t r a j e c t o r y  t h a t  i s  c l o s e r  t o  t h e  cen te r  of t h e  
cy l inde r  is  determined. For t h i s  p o i n t ,  RA, TA, RB, TB, UA, CA, 
UB, CB, RK, TK, UK, CK, U I ,  U I I ,  C I ,  and C I I  are found and 
recorded. When t h i s  f i r s t  l i n e  p a r a l l e l  t o  t h e  shock is  found, 
t h e  condi t ions  along t h e  second l i n e  a r e  found i n  much the same 
manner. 
found because these p o i n t s  may f a l l  between the  previous ly  
recorded g r i d  po in t s .  Therefore, a s i m p l e  i n t e r p o l a t i o n  i s  

performed. 

However, t h e  condi t ions a t  A and E3 are not so e a s i l y  

L i s  def ined  i n  t h e  program and p r i n t e d  out  so t h a t  we  know 
what l e g  of  t h e  program is  being computed. The q u a n t i t y  A i s  
read  i n t o  t h e  program from the data card, determines the  shock 
pinch t i m e  as 1/A. G represents  Gamma. 
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* 

10 FLIKi;rAT(51H1 STRAIGHT SHOCK B Y  CHARACTEKISTICS, GLEN A. KOI . IELL/ / / )  
1 5 
17 FORMAT(6HGAMMA=F6.3, 11H OELTA R=F5.3, 11H DELTA TzF6.4, 

FOR t,iAT ( 5 F 1 2 6 

1 5H A=F5*2 ,12H 1 PART I N  F 6 . 0 / / )  
2 0  FURMAT ( 2 0 H  O=F13.6, 14H LEG NU.12)  
30 FORMAT ( 2 F 2 0 . 6 )  
40 FORClAT (9HORPISTON=F7.4, 1ZH TPISTON=F7.4 t 1 6 H  PISTON MACH= 

1 F 7.4 / I  
5 0  FORMAT(3H R ( I 2 , 2 H ) = F 6 . 4 , 4 H  T ( I 2 , 2 H ) = F 7 * 4 , 4 H  M ( I 2 , 2 H ) = F 7 . 4 )  
60  FURMAT ( 2 F 9 . 4 ~  12H U I+CI=F7 .4 ,  2F9.4914H U I I - C I I = F 7 . 4 )  

80  FORMAT ( 1 H 1 )  
70 FORMAT ( 4 H  RA=F6.4,6H TA=F7*4 ,10H RB=F6.4,6H T B = F 7 . 4 / / / )  

5 READ 15, G t  DK, DT, A,  PCENT 
PRINT 10 
PRINT 17, G ,  DR, DT, A, VCEI'JT 
EPSLON = ( G - l o ) / ( G  + 1.) 
U = -2 . / (G+ l . )  
C = SQRTF(-UsG*EPSLON) 
N = 1./DR 
DIMENSION R 1 (  1 0 0 ) ~  U 1 (  2 0 0 1 9  T 1 (  1 0 0 ) ~  C 1 (  200) 
K l ( 1 )  = 1. - DR 
T l ( 1 )  = DR 
DO 100 I = 2,N 
T l ( I ) = T l ( I - l )  + DR 

v = u  
U I  = u 
U I I  = u 
C I  = c 
C I I  = c 
OELCI  = 0 .  
D E L C I I  = 0 .  
TP = D T / ( l .  + V )  
RP = 1. + V*TP 

100 R 1 (  I ) = R l (  1-11 -DR 

1 2 0  D E L T I  = D T / ( 1 .  + U I  + C I  1 
R A  = RP - ( U I  + C I  1 %  D E L T I  
R I  = ( R A  + RP)  * .5 

UP = U + DELUI  
U I A  = ( U  +UP)* .5 
U l l  = U i A  
D E L U I I  = DELUI  
D E L T I I  = D T / ( l m  + U I I  - C I I )  
RB = RP - ( U I I  - C I I ) *  D E L T I I  
R I I  = IRB + RP) * .5 
D E L C I I  = ( D E L U I I  - U I I  * C I I  * D E L T I I / R I I ) ~ ( G - 1 . ) / 2 .  
C P  = C + D E L C I I  
C I I  = ( C P  + C)" .5  
C I  = ( C I I + C I ) Q . 5  
0 = A H S F ( ( U 1 A  - U I ) / U I A * P C E N T )  
L = l  
P R I N T  20, 0 ,  L 
D E L C I  = ( D E L C I I + D E L C I  19.5 

130  D E L U I  = -2. * D E L C I / ( G - l . )  - U I * C I s D E L T I / K I  

U I  = ( U I A  + U I ) * . 5  
I F ( O - I . * )  1 5 0 ,  1209  1 2 0  

1 5 0  V = ( I J P  + U Ia .5 
c T G  = D T / ( l .  + V )  

RG = 1. + V*TG 
P = A B S F ( ( T G  - T P ) / T G  9 PCENT) 
Q = A B S F ( ( R G  - RP) /RG * PCENT) 
P R I N T  3 0 ,  P, 0 

c-3 

10 
20 
3 0  
3 1  
40 
5 0  
60 
6 1  
70  
8 0  
90 
100 
110 
1 2 0  
1 3 0  
140 
i 50 
160 
170 
180 
1y0 
200 
2 1 0  
2 2 0  
2 30 
2 40 
2 5 0  
2 6 0  
2 7 0  
2 8 0  ' 
2 9 0  
300 
3 1 0  
3 2 0  
3 3 0  
3 4 0  
3 5 0  
3 6 0  
370 
3 8 0  
7 0  0 
400 
410 
4 2 0 
4 3 0  
440 
4 5 0  
4 6 0  
4 7 0  
4 8  0 
4 5 0  
5 0 0  
5 1 0  
5 2 0  
5 3 0  
5 4 0  
5 5 0  
5 6 0  
5 7 0  
5 8 0  
5 9 0  



S 

640 
650 
660 
670 
680 
690 
700 
710 
7 20 
730 
7 40 
7 50 
7 60 
770 
78n 
790 
8 00 
8 10 
8 20  
8 30 
8 40 
8 50 
8 60 
870 
880  
890 
900 
910 
920 
930 
9 40 
9 50 
9 60 
970 
980  
990 
lOnn 
1010 

a 

1 ' 

. 
R P  = RG 
T P  = T G  
I F  ( P + Q - l . )  1601 160, 1 2 0  

160 T P I S T N  = T P s A  

Id = U I / A  
X = C I / A  
Y = U I I / A  
Z = C I I / A  
E = D E L T I * A  
F = D E L T I I * A  
B = W + X  
O = Y - Z  
T A  = T P I S T N  - E 
TH = T P I S T N  - F 
P R I N T  40, KP,  T P I S T N ,  G M P S T i i  

GM P S T N  =-UP / C P 

P R I N T  609 It!, X, B, Y ,  Z ,  D 
P R I N T  70, RA,  TA ,  K B T  TO 
K = (1. - R P ) / D R  +lo 
R = R l ( K )  
T l ( K ) = T l ( K )  + D T  
T = T l ( K )  

R A  = R - ( U I  + C I  ) *  D E L T I  
140 D E L T I  = D T / ( l .  + I J I  + C I  1 

R I  = ( R A  + R 1 * 05 
170 D E L U I  = -2. G D E L C I / ( G - l . )  - U I * C I * D E L T I / R I  

UK = U + D E L U I  

D E L T I I  = D T / ( l .  + U I I  - C I I )  
R B  = R - ( U I I  - C I I ) *  D E L T I I  

D E L U I I  = L ) E L U I  

U I I  = ( U  + U K 1 9 . 5  

R I I  = ( R B  + R 1 Q - 5  

D E L C I I  = ( D E L U I I  - U I I  * C I I  9 D E L T I I / K I I ) * ( G - l o ) / 2 0  
D E L C I  = ( D E L C I I + D E L C I ) * . 5  
CK = C + D E L C I I  
C I I  = ( C K  + C 1 9.5 
C I  = ( C I + C I I ) * . 5  
U I A  = ( U  + U K ) * . 5  
0 = A B S F ( ( I J 1 A  - U I ) / U I A - Z P C E N T )  
L = 2  
P R I N T  209 0 ,  L 
U I  = ( U I A + U I ) * . 5  
I F  ( 0  - 100.) 175, 1907 190 

175 I F ( O - l o )  180 ,  140, 140 
1 8 0  I J l ( K ) =  U K  

C l ( K ) =  CK 
G M A C H  = - U K / C K  
T R  = T * A  
W = U I / A  
X = C I / A  
Y = U I I / A  
Z = C I I / A  
E = D E L T I * A  
F = D E L T I I * A  
B = W + X  
D = Y - Z  
T A  = T R  - E 
T B  = TI? - F 
P R I N T  50, K ?  R T  K c  T R T  K,  GMACH 
P R I N T  60, \4, X, B ,  Y ,  Z, D 
P R I N T  70, R A ,  T A ,  R B t  T B  
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K = K + l  
R = R l ( K )  
T l ( K ) = T l ( K )  + D T  
T = T l ( K )  
I F  ( T - 1 . 1  1409 1909 190 

190 T P A M  = T P  
R P A M  = R P  
U P A M  = U P  
C P A M  = C P  
P R I N T  80 '  
K M A X  = K - 2 
v = U P  
T P  = T P  + D T / ( l . + V )  
I F  (1. - T P )  5 9  59 195 

U I  = U P  
U I I  = U P  
C I  = C P  
C i I  = C P  
D E L C I  = 0- 

195 R P =  R P + V *  D T / ( l . + V )  

200 D E L T I  = U T / ( 1 .  + U I  + C I  1 
RA = K P  - ( U I  + C I  ) *  D E L T I  
R I  = ( R A  + R P )  * .5 

C A  = ( R A  - K l ( I A ) ) ~ ( C l ( I A ) - C l ( I A  + l ) ) / D t ?  + C l ( I A )  
U A  = ( R A  - R l ( I A ) ) * ( U l ( I A ) - U l ( I A  + l ) ) / D R  + U l ( I A )  
U I  = ( U A  + U P I a . 5  

I A  = ( l . - K A ) / D K  

C I  = ( C A + C P ) * o 5  
D E L U I  = -2. * D E L C I / ( G - l . )  - U I * C I * D E L T I / K I  
U P  = U A  + D E L U I  
D E L T I I  = D T / ( 1 .  + U I I  - C I I )  
RB = R P  - ( U I I  - C I I ) *  D E L T I I  
R I I  = ( R B  + R P )  * 05 
I 5  = ( l . - R B I / D R  
I F  ( K L I A X - I B )  59 2059 205 

205  CB = ( R B  - R 1 ( I B ) ) * ( C 1 ( I B ) - C 1 ( I B  + l ) ) / D R  + C l ( I B )  
UB = m a  - R i ( I B ) ) * ( u i ( I B ) - u i ( I B  + ~ ) ) / D R  + U ~ ( I B )  
U I I  = ( U B  + U P ) * . 5  
C I I =  ( C B + C P ) * . 5  
D E L U I I =  U P  - U6 
D E L C I I  = ( D E L U I I  - U I I  * C I I  - % D t L T i i i R i i i ~ ~ i G - l .  i '?.  

C P  = CB + D E L C I I  
C I I  = ( C P  + CB)*.5 
D E L C I  = ( C P - C A + D E L C I ) s . 5  
C I  = ( ( C P  + C A I  * . 5 + C I ) * . 5  
U I A  = ( U A + U P ) * . 5  
0 = A B S F ( ( U 1 A  - U I ) / U I A - % P C E N T )  
L = 3  
P R I N T  209 0 ,  L 
U I  = ( U I A + U I ) * . 5  
I F ( O - l * )  2109 2009 200 

210 V = ( U P A M + U P ) * . 5  
T G  = DT/(l. + V I  + TPAk I  
RG = RPAi.1 + V * D T / ( l . + V )  
P = A B S F (  ( T G  - T P ) / T G  6 P C E i I T )  
Q = A Y S F ( ( K G  - KP)/KG 0 P C E N T )  
P R I N T  309 P9 U 
R P  = RG 
T P  = T G  
I F  ( P + Q - l . )  2209 2 2 0 9  200 

220 T P I S T I I  = T P * A  
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1210 
1 2 2 0  
1 2 3 0  
1240 
1 2 5 0  
1 2 6 0  
1 2 7 0  
1 2 8 0  
1290 
1300 
1310 
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1360 
1370 
1 3 8 0  
1 3 9 0  
1400 
1410 
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1440 
1450 
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1470 
1480 
1490 
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1510 
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1 5 3 0  
1540 
1 5 5 0  
1560 
1570 
1 5 8 0  
1 5 9 0  
1600 
1610 
1620 
1630 
1640 
1650  
166t1 
1670 
1680 
1690 
1700 
17 10 
1720  
1 7 3 0  
1 7 4 0 
1 7 5 0  
1760 
1770 
1 7 5 0  
1790 
1800 
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. Y 

GIY P S Ti\! = - IJ  P / C P 
W = U I / A  
X = C I / A  
Y = U I I / A  
Z = C I I / A  
E = tJ tLTI -zA 
F = D E L T I I - z k  
6 = r . ! + X  
O = Y - L  
TA = TPISTtJ - t 
T6 = TC'ISTN - F 
PKI iJT 4 0 ,  t?P, TPISTt t ,  GiIPSTId 
PKIi\ IT b o ,  '.;, X ,  8 ,  Y,  Z ,  0 
P k I b ! T  7 G ,  & A ,  TA, i:B, T S  
i( = (1. - i?P) /UR +l. 
I<I;EE? = i< 
f i  = l t l ( K )  
T l ( K ) = T l ( i O  + LJT 
T = T l ( K )  
UK = i i P  
C K  = C P  

K A  = K - ( U I  + C I  OELTI  
K I  = ( R A  + I: 1 * 05 
I A  = ( l . - l < A ) / D k  
CA = ( K A  - K l ( I A ) ) * ( C l ( I A ) - C L ( I A  + l ) ) / D R  + C l ( I A )  
UA = (KA - K l ( I A ) ) * ( U l ( I A ) - U l ( I A  + l ) ) / D F <  + U l ( I A )  

4 

2 3 0  O E L T I  = D T / ( 1 *  + U I  + G I  1 

U I  = (UA + UK)* .5 
C I  = (CA+CK)* .5 
D t L U I  = -2. * D E L C I / ( G - l . )  - U I * C I * D E L T I / K I  
UK = UA + OELUI  
D E L T I I  = D T / ( l .  + U I I  - C I I )  
RB = R - ( U I I  - C I I ) *  D E L T I I  
R I I  = (RB + R 1 * 0 5  
I 6  = ( l . -RB) /DR 
I F ( I B - K M A X )  233 ,  233 ,  2 5 0  

2 3 3  CB = ( R B  - R l ( I B ) ) * ( C l ( I S ) - C l ( I B  + l ) ) / D R  + C l ( I B )  
UB = ( R U  - R l ( I B ) ) * ( U l ( I B ) - U l ( I B  + l))/DR + U l ( I B )  
U I I  = (UB + UK)-2.5 

D E L U I I  = UK - UB 
C K  = C B  + D E L C I I  

C I I =  (CB+CK)* .5  

D E L C I I  = ( D E L U I I  - U I I  * C I I  * D E L T I I / K I I ) 3 ( G - 1 . ) / 2 .  

D E L C I  = ( C K - C A + D E L C I ) * o 5  
C I  = ( ( C K  + CA)* .5+CI ) * .5  
U I A  = (UA + UK la .5  
0 = ARSF( (U1A - UI) /UIA;PCENTI 
L = 4  
P R I N T  20,  0 ,  L 
U I  = ( U I A + U I ) * . 5  
I F  ( 0  - 100.) 2 3 5 ,  250, 2 5 0  

2 3 5  I F ( 0 - 1 . 1  240 ,  2 3 0 ,  2 3 0  
2 4 0  J = N+K 

U l ( J ) =  UK 
GMACH =-UK/CK 
TR = T*A 
id = O I / A  
X = C I / A  
Y = U I I / A  
2 = C I I / A  
E = DELTIx-A 

. 
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2 3 6 0  
2 3 7 0  
2 3 8 0  
2 3 9 0  

2 4 1 0  
2 4 2 0  
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F = D E L T I I * A  
B = \*I + x 
D = Y - Z  
TA = T R  - E 
T R  = TR - F 
P K I N T  5 0 ,  KI R I  K, T R ,  K I  Gt4ACH 
P R I N T  6 0 ,  Wt X ,  B y  Y t  Z, D 
P K I N T  70, R A Y  T A ,  R B ,  T S  
C l ( J ) =  CK 
K = K + l  
R = R l ( K )  

T = T l ( K )  
1, T l [ K ) = T l ( K )  + D T  

I F  ( T - l e 1  2 3 0 ,  2 5 0 ,  2 5 0  
250 K = K - 1 

KMAX = K 
DO 260  I = K K E E P ,  K 
I I = I + N  
U l ( I ) = U l (  I 1  1 

2 6 0  C l ( I ) = C l (  11 1 
G O  TO 190 
E N r) 
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